ADSS stands for "All-Dielectric Self-Supporting." It's a type of fiber optic cable designed to be installed in aerial environments, typically between utility poles or other structures. Unlike traditional fiber optic cables that require a supporting messenger wire or metal conductor for installation, ADSS cables are constructed to be self-supporting.
The ADSS cable comprises several layers: the core, which houses the optical fibers responsible for transmitting data; a buffer or coating around the fibers for protection; and a strong outer layer designed to withstand environmental factors like weather, wind, and temperature changes. This outer layer is made of dielectric materials, meaning it doesn't conduct electricity, which makes ADSS cables safe to use near power lines without interference or risk of electrical hazards.
These cables are commonly used in telecommunications and internet infrastructure to provide high-speed data transmission over long distances. Their self-supporting nature makes installation easier and more cost-effective, as they don't require additional hardware for support along their route.
The structure of ADSS cable can be divided into two categories—central tube structure and stranded structure. In a central tube design, the fibers are placed in a PBT loose tube filled with water-blocking material within a certain length. Then they are wrapped with aramid yarn according to the desired tensile strength and extruded with PE (≤110KV electric field strength) or AT (≥100KV electric field strength) sheath. This structure features with small diameter and light weight but has limited lengths.
In a stranded structure design, the inner optical fibers and water-blocking grease are added into the fiber loose tube, and different loose tubes are wound around the central reinforcement (usually FRP). The rest parts are basically similar to the central tube structure. This type is able to obtain longer fiber lengths. Although the diameter and weight are relatively big, ADSS cables with this structure are better to be deployed for large span applications.
When it comes to aerial cablings or outside plant (OSP) deployments, ADSS cable will provide an efficient and optimal solution in most of the cases. The remarkable advantages of this ADSS fiber cable are twofold: reliable and cost-effective.
Fundamentally speaking, ADSS fiber optic cable is small in size, light in weight, strong in structure, and flexible in applications, which is suitable for most outside aerial deployments. The small and light nature of the ADSS cable will reduce the load on tower structures for some external influencing factors like cable weight, wind, ice, etc. The structure design will not only prevent moisture and chemical attacks but also will protect the polymer strength elements from the effect of solar ultraviolet light. Besides, the strong structure will also allow up to 700m lengths to be installed between support towers.
Economically speaking, as an alternative to OPGW (Optical Fiber Ground Wire) and OPAC (Optical Attached Cable) solutions, ADSS cable can provide a cost-effective solution by saving the money and the resources with easier installment and wider ranges. Adopting ADSS cables can exploit the considerable economic advantages offered by the installation of existing high voltage power lines. In addition, the installation of ADSS cables is faster and easier than previous aerial designs. Do not need support or messenger wires, a single pass is sufficient for installation. ADSS cable can be used for applications ranging from short span (40-50 meter) distribution lines to long-span transmission lines (300-500 meter spans) to extraordinary spans required by some river canyon crossings exceeding 1,800 meters.
Originally, ADSS cable was developed from a military lightweight rugged deployable (LRD) field cable. With the continuous improvements, it is now used for short span aerial installations—typically on roadside power distribution poles. Since the ADSS cable is non-metallic, it is ideal for applications near high-voltage power distribution lines for which it has become a standard. Using single mode fibers and light wavelengths of either 1310 nm or 1550 nm, circuits up to 100 km long are possible without repeaters. Usually, ADSS was used in 48 and 96 cores. Here is a sketch of a normal ADSS cabling scenario:
Save money - with manufacturer direct pricing
Save time - with experienced team to get project done
Lead the industry - with the most cutting-edge products